
Fuzzing with Echidna

What is fuzzing
Defining invariants
External vs Internal testing
Debugging with coverage reports

WHAT IS FUZZING

1

4 main testing techniques

Unit testing

Manual analysis

Fully automated analysis

Semi-automated analysis

 Generate a random
 input

Test something If it fails, save input
(or stop)

2

WHAT IS FUZZING

3

Fuzzing is feeding a piece of code (function, program, etc.) data
from a large corpus, possibly dynamically generated, possibly
dependent on the results of execution on previous data, in order
to see whether it fails.
Property based testing is the construction of tests such that,
when these tests are fuzzed, failures in the test reveal problems
with the system under test that could not have been revealed by
direct fuzzing of that system.

A property-based testing library has two parts:
A fuzzer.
A library of tools for making it easy to construct property-
based tests using that fuzzer.

WHAT IS FUZZING

4

Echidna aims to break user-defined invariants

In smart contracts, invariants are Solidity functions that can represent any

incorrect or invalid state that the contract can reach, including:

Incorrect access control: The attacker becomes the owner of the

contract.

Incorrect state machine: Tokens can be transferred while the contract is

paused.

Incorrect arithmetic: The user can underflow their balance and get

unlimited free tokens.

WHAT IS FUZZING

5

WHAT IS FUZZING

Echidna inputs: target contracts + properties to test

6

Defining good invariants

Start small and iterate

Steps

 Define invariant in English1.

 Write the invariants in solidity2.

 Run Echidna3.

If invariants broken: investigate

Once all invariants pass, go back to step 1

DEFINING INVARIANTS

7

Two types of invariants

Function-level invariants

Doesn’t rely much on the system OR could be stateless

Can be tested in an isolated fasion

Examples: Assotiative property of addition OR depositing tokens in a

contract

System-level invariants

Relies on the deployment of a large part or the entire system

Invariants are usually stateful

Examples: user’s balance < total supply OR yield is monotonically

increasing

DEFINING INVARIANTS

8

Testing system level invariants require initialization

Simple initialization

Deploy everything in the constructor

Complex initialization

Leverage unit-test framework with Etheno

DEFINING INVARIANTS

9

EXTERNAL VS

INTERNAL TESTING
What is internal testing?

It uses inheritance to test the target contract

Pros

Easy to setup

Get the state all public/external functions of the inherited contract

msg.sender is preserver

Cons

Not good for complex systems

Mostly viable for single-entrypoint systems

10

EXTERNAL VS

INTERNAL TESTING

Visualizing internal testing

11

EXTERNAL VS

INTERNAL TESTING
What is external testing?

Uses external calls to the target system

Pros

Good for complex systems with complex initialization

Good for multi-entrypoint systems

Mostly used in practice

Cons

Difficult to setup

msg.sender is not preserved

12

EXTERNAL VS

INTERNAL TESTING

Visualizing external testing

13

DEBUGGING WITH

COVERAGE REPORTS

Coverage is the testing of what code was “touched” by the fuzzer

How to read coverage report

*: Execution ended with STOP

At some point, this line was executed with no errors

r: Execution ended with REVERT

At some point, this line caused transaction to revert

o: out-of-gas error

Common with loops

e: Execution ended with any other error

E.g. zero division

14

DEBUGGING WITH

COVERAGE REPORTS

Coverage report is a crucial debugging tool that will greately improve

the testing effort

Provides a guarantee that the tests ran as expected

You should not run Echidna without coverage enabled

CLI: --corpus-dir <directory-name>

Config file: corpusDir: <directory-name>

THANK YOU

15

MORE IN OUR BLOG:
blog.oxor.io

CONTACTS

OXOR.IO

PUBLIC AUDITS

WEI@OXOR.IO

@0XORIO
WORK WITH US!

16

mailto:wei@oxor.io
https://twitter.com/0xorio
https://oxorioteam.notion.site/Careers-da7d5b13b81b495b9a8b3eaacdd424ab

